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ABSTRACT 

Activation of the nuclear factor kappa β (NF-κβ) is related to many inflammatory diseases, including age-related macular 

degeneration (AMD). The imbalance in the redox state, which happens mainly in senescence, associated with several peculiar 

characteristics of the macular region, has led to studies of this molecule for AMD therapeutic interventions.  Findings report 

the involvement of NF-κβ both in the triggering as well as in the worsening condition of AMD. The present article correlates 

AMD oxidant and inflammatory genesis with the action of the nuclear factor kappa β. Besides its mechanism of action, this 

study also analyzes the main inflammatory cytokines and adhesion molecules that may be activated by NF-κβ and are closely 

related to AMD 
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INTRODUCTION

Age-related macular degeneration is the main cause of 

irreversible loss of vision in the elderly in developed 

countries (1,2). Although AMD physiopathogenic 

mechanisms are not completely explained, some 

peculiarities of the macular region that induce its 

degeneration have already been established. The retina is 

a tissue exposed to oxidative stress due to its high 

metabolism, large concentrations of polyunsaturated fatty 

acid content, exposure to visible light (between 400 - 700 

nm) and the presence of photosensitive molecules such as 

rhodopsin and lipofuscin (3). The oxidative and nitrosative 

stress to which the retina is exposed is induced by the 

imbalance between the antioxidant defense and the 

production of reactive oxygen species (ROS) and reactive 

nitrogen species (RNS) and plays an important role in the 

triggering and progression of AMD (3-5). Photosensitive 

reactions, for example, generate ROS and RNS, such as 

superoxide (O2¯ •), hydrogen peroxide (H2O2), singlet 

oxygen (1O2), and peroxynitrite (ONOO-), which induce 

damage to retinal pigment epithelial (RPE) cells (6,7). The 

hypofunctioning RPE cells inhibit the appropriate 

degradation of the products resulting from the 

phagocytosis of the photoreceptor outer segment cells, 

causing the pathological accumulation of lipids in the 

Bruch’s membrane (8,9), producing druses and other 

extracellular deposits in the Bruch’s membrane. These 

deposits are considered important risk factors for the 

development of AMD (8,9). The druses, as well as the 

choriocapillaris, the photoreceptors and the RPE cells, 

present inflammatory and immunological markers (10-

22).  Additionally, microglia, the immune cells responsible 

for the coordination of responses to inflammatory stimuli 

of the retina (23-24), as well as the RPE cells and the 

macrophages, secrete cytokines, enzymes, and growth 

factors, responsible for the triggering and the progression 

of AMD (25-28).  

Inflammation is an important activator of the nuclear 

factor kappa β (NF-κβ). When activated, this transcription 

factor induces an increase in inflammatory cells and 

molecules perpetuating the cycle (29).  Additionally, NF-

κβ is also a redox-sensitive transcription factor, that is, its 

activation is triggered by the cell oxidative stress (30-35). 

Several studies correlate NF-κβ with AMD (36-39). 

Hence, this review discusses the role of the nuclear factor 

kappa β (NF-κβ) and its activated inflammatory molecules 

in AMD genesis. 
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NF-kβ  

Transcription factors are proteins responsible for the 

coordinated expression of genes through specific binding 

to gene promoter and enhancer sites (40). NF-κβ 

transcription factor was discovered in 1986. It was first 

identified in T lymphocytes, and later observed in all 

mammal cells (41-42). It plays an important role in the cell 

survival and proliferation, as well as in its apoptosis (43-

44). Additionally, it helps to regulate the expression of 

genes associated with the immune and inflammatory 

responses (45-46). It is important to note that this 

transcription factor mediates the synthesis of cytokines 

such as tumor necrosis factor-α (TNF-α), Interleukin-1β 

(IL-1β), Interleukin-2 (IL-2), Interleukin-6 (IL-6), and 

Interleukin-8 (IL-8), as well as the expression of the 

cyclooxygenase 2 (COX-2), inducible nitric oxide 

synthase (iNOS), and acute phase proteins, such as c-

reactive protein (CRP). Besides the response it provides to 

the acute inflammation, NF-κβ is a master regulator of the 

chronic inflammatory processes (47-48). Such cytokines 

may cause oxidative stress-induced cell dysfunction or cell 

death (49). NF-κβ activation is also related to the increase 

in the expression of the adhesion E-selectin, intercellular 

adhesion molecule-1 (VCAM-1), and vascular cell 

adhesion molecule-1 (ICAM-1), whereas inhibition of NF-

κβ decreases the transmigration and the leukocyte 

adhesion (50).  

NF-κβ family (or Rel family) is composed of five subunits:  

p65 (RelA), c- Rel, RelB, p50 and p52. It is characterized 

by including a well-preserved N–terminal domain with 

around 300 amino acids (RHD – Rel homology domain), 

which subdivides into two domains, the DNA-binding and 

the dimerization one (43, 51-53). NF-κβ subunits homo- or 

hetero-dimerize to form activating dimers (p50-p65) or 

repressors (p50-p50 e p52-p52). They are found in the 

cytoplasm of most cells in an inactivate state, binding with 

the inhibitory proteins of the inhibitory kappa B (IκB) 

family, among which the most important are IκBα, IκBβ, 

and IκBε.  IκBα is associated with the transient activation 

of NF-κβ, whereas IκBβ is involved in sustaining the 

activation (54-57). 

There are two pathways to activate the NF-κβ: the classical 

(canonical) and the alternative (non-canonical) pathways. 

The classical one is more common and is associated with 

inflammation-related genes, innate immunological 

response, anti-apoptosis and cell survival (40). 

Conversely, the alternative pathway is associated with the 

expressions of genes that contribute to develop and 

maintain the secondary lymphoid organs (58). When not 

activated, NF-κβ factor is found in the cytoplasm, binding 

to an inhibitory protein, IkB. This complex prevents the 

translocation of NF-κβ into the nucleus. Hence, IkB 

phosphorylation and degradation are required for 

translocation to occur (43-44,54,59).  After IκB 

degradation, NF-κβ dimers (E.g. p50-p65) are released and 

migrate into the nucleus where they will bind with κB 

target gene enhancers, inducing the transcription of genes 

that mediate several cellular processes such as immunity, 

inflammation, proliferation, apoptosis and cellular 

senescence (60-62).  

Several internal and external cell stimuli may contribute to 

this activation, such as neurotrophins, neurotoxic proteins 

(such as β-amyloid), cytokines (Interleukin-1 and TNF-α), 

glucocorticoid, phorbol esters, atrial natriuretic peptide, 

ceramides, virus- and bacteria-derived products, 

ultraviolet irradiation, ionizing radiation, enzyme reaction 

products such as iNOS and COX-2 (29,47,63-66). It is 

important to point out that during chronic inflammation, 

several immunological cells are continuously activated by 

inflammatory mediators, and when inflammation is not 

resolved, the cells recruited by the inflammatory mediators 

secrete additional mediators, inducing a vicious cycle that 

activates NF-κβ in a chronic way (29).  
 

THE ROLE OF NF-κβ IN AMD PATHOGENESIS  

It is possible to infer that, due to the fact that NF-κβ is 

activated by the oxidative stress and the inflammatory 

cytokines, such as TNF-α and IL-1β, as well as by the 

concentration of UV rays, the macular region meets the 

appropriate conditions for its activation (63-64,67-68).  

Besides these factors, the chronic oxidative stress induces 

the production of advanced glycation end products (AGE) 

and their receptors (RAGE). It is important to point out 

that increased RAGE or AGE levels were identified in 

RPE cells for isolated samples of AMD patients (69-70). 

It is known that the increase in AGE and RAGE activates 

NF-κβ in RPE cells (70).  

Activation of NF-κβ induces an increase in the expression 

of several inflammatory cytokines and adhesion molecules 

that can potentially trigger and/or worsen AMD. Among 

those to be highlighted are:     
 

Tumor necrosis factor-α (TNF-α) 

TNF-α is a low molecular weight protein, produced, 

predominantly, by activated macrophages. It has the 

potential to modulate the production and expression of the 

vascular endothelial growth factor (VEGF) receptors (71-

72). This cytokine may play a cell protective or destructive 

role. These characteristics may be closely associated with 

its receptors tumor necrosis factor receptor superfamily 

member 1A (Tnfrsf1a) and tumor necrosis factor receptor 

superfamily member 1B (Tnfrsf1b). It is known that 

activation of Tnfrsf1a induces inflammation, inhibition of 

the endothelial cellular migration and apoptosis of the 

endothelial cells (73). Additionally, it has shown potential 

to inhibit the choroidal neovascularization (CNV). 

Conversely, Tnfrsf1b receptors regulate lymphocyte 

proliferation (74) and promote endothelial cell activation, 

migration, and survival (75-76). In this regard, Tnfrsf1b, 

unlike Tnfrsf1a, may promote CNV (77). An experimental 

study reported that TNF-α down-regulates VEGF 

secretion in polarized RPE cells but up-regulates it in non- 

polarized RPE cells. These results are due to the opposing 

activity levels of the c-Jun N-terminal kinase (JNK) and 

NF-κβ pathways. In certain clinical conditions, such as 

AMD, the RPE cell polarity changes at different stages of 

the disease with the RPE cells being polarized early on, 

and some RPE cells losing their cellular polarity at the later 

stages (36). In the physiopathogenesis of the choroidal 

neovascular membrane (CNVM), experimental and 

clinical studies demonstrated that intervention in this 

cytokine may improve angiogenesis progression (78-80). 

TNF-α also stimulates the production of Interleukin-6 

(81). 
 

Interleukin-6 (IL-6) 

IL-6 is a multifunctional cytokine that acts upon a wide 

range of cell tissues and linings. It is considered a potent 

mediator of the inflammation and immune response (81-
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82) and is a marker for systemic inflammation. Human 

RPE cells constitutively express and release IL-6 at a 

relatively low level (83). Several AMD studies have 

reported IL-6 to be an important regulator of CNV, as it 

also acts upon VEGF expression (47,84-87). Increase in 

IL-6 levels were observed in a laser-induced CNV mouse 

model and the blockage of its receptors induced a 

significant decrease in the expression of monocyte 

chemoattractant protein-1 (MCP-1/CCL2), VEGF and 

inhibited macrophage infiltration into the CNV areas (88). 

A prospective cohort study demonstrated that elevated IL-

6 may serve as marker for the progression of AMD (89). 

However, another study found no significant association 

between plasma IL-6 levels and AMD, or AMD 

progression (90). The inhibition of NF-κB activation 

decreased the H2O2-induced increase of IL-6 release by 

RPE cells, demonstrating NF-κB effect on this 

inflammatory interleukin (91). 
 

Inducible Nitric Oxide Synthase (NOS-2 or iNOS) 

Nitric oxide synthase (NOS) is a family of enzymes that 

catalyzes the production of nitric oxide (NO), from L-

arginine. This family presents three isoforms: NOS-1 or 

neuronal (nNOS); NOS-2, or inducible or immunological 

(iNOS); and NOS-3 or endothelial (eNOS).  The three 

isoforms are found in different eye tissues (92,93). 

Overproduction of the free radical NO has been associated 

with the pathogenesis of a variety of inflammatory and 

immunologically mediated diseases as well as with the 

induction and progression of AMD (94). Activation of NF-

kβ induces not only the iNOS expression, but also the 

pathological conditions caused by the endotoxins or the 

cytokines such as IL-1, IL-6, and TNF-α. Upon induction, 

iNOS will produce a large amount of NO for a long period 

of time (95). In this condition, NO is converted into NO2, 

nitrite, peroxynitrite and free radicals to induce 

pathophysiological alterations such as AMD (94-96). It 

has been demonstrated that a specific NF-kB inhibitor, 

pyrrolidine dithiocarbonate (PDTC), reduced iNOS 

expression in RPE cells treated with linoleic acid (LA) 

(37). 
 

Interleukin-1β (IL-1β) 

 IL-1β is a pro-inflammatory cytokine that may initiate 

innate immunological processes associated with 

inflammation, infection, and immunity (97-98). In the 

retina, immunoreactivity to IL-1 has been observed in the 

astrocytes and Müller cells (99). IL-1β is secreted as an 

inactive form and requires proteolytic cleavage by the 

caspase-1 enzyme to be released in an active form (100).  

Caspase-1 activation platform, known as inflammasome, 

has been associated with AMD physiopathogenesis (101-

102). 

A study on AMD experimental models, with geographic 

atrophy of the choroid, has reported that mononuclear 

phagocytes express IL-1β, responsible for the lesion of 

cone outer elements and death of rods (103-105). Another 

study demonstrated that IL-1β induces rod degeneration 

through the disruption of retinal glutamate homeostasis 

(106). Additionally, patients with polypoidal choroidal 

vasculopathy and wet AMD presented a significant 

increase in the expression of IL-1β in vitreous (107).  

Suppression of IL-1β expression by salicin has shown to 

inhibit activation of NF-kβ in retinal endothelial cells, 

representing a potential therapeutic approach to treat CNV 

in AMD (108). 

 

Interleukin-2 (IL-2) 

IL-2 plays crucial roles in regulating both immune 

activation and homeostasis (109).  It is mainly produced 

by activated T cells, especially CD4+, and is synthesized 

in smaller amount by B cells and monocytes. IL-2 is one 

of the main T-cell stimulating factor (110) and has already 

been associated with AMD (111). A study has reported an 

increased activation of the inflammation pathway IL-2, 

which is consistent with the conclusions drawn from 

clustering analysis of several AMD phenotype-specific 

RPE-choroid modules that inflammation is a prevalent 

functional category (112). Another study investigated the 

effects of IL‐2 on epithelial‐mesenchymal transition 

(EMT), extracellular matrix (ECM) synthesis and 

transforming growth factor β2 (TGF‐β2) expression in 

RPE cells. The results indicated that the signal transducer 

and activator of transcription 3 (STAT3) and NF‐κβ 

signaling pathways might interact with each other and play 

important roles in IL‐2‐induced fibrosis in RPE cells 

together. These findings can offer new insights about the 

molecular mechanisms underlying the pathogenesis of 

AMD (113). 
 

Interleukin-8 (lL-8)   

IL-8 was identified in 1987 as a novel type of neutrophil-

activating cytokine. It is released by phagocytes and a wide 

variety of tissue cells upon exposure to inflammatory 

stimuli (114).  IL-8 also promotes an increase in the 

expression of adhesion molecules by the endothelial cells 

and activates the polymorphonuclear neutrophils, 

increasing the oxidative metabolism (115). 

A meta-analysis suggested that IL-8 +781 C/T 

polymorphism affects predisposition to AMD and wet 

AMD. Moreover, patients with AMD and wet AMD also 

present elevated IL-8 levels (116). A case-control study 

suggested a possible secondary role of IL-8 gene in the 

development of AMD and regarded IL-8 as a new 

susceptibility genomic biomarker of AMD (117). The 

intraocular IL‐8 concentrations have been elevated in 

patients with exudative AMD (118) and correlated with the 

size of an active CNV (119). Studies have shown that NF-

kβ activity is upregulated in the presence of 25-

hydroxycholesterol (25-OH), a potent inducer of IL-8 

expression and secretion in human adult retinal pigment 

epithelial (ARPE-19), and that this transcription factor is, 

at least, partially involved in IL-8 production upon 5-OH 

treatment (120). 
 

Cyclooxygenase 2 (COX-2) 

 COX-2 belongs to an enzyme group formed by COX 

isoforms COX-1, COX-2 and COX-3, which is involved 

in inflammatory immune responses required for the 

conversion of arachidonic acid to prostaglandins (121). It 

mediates inflammation and is induced by pathological 

stimuli including cytokines, growth factors, inflammatory 

mediators, and bacterial lipopolysaccharides (121-122). In 

humans, COX-2 is detected in the outer plexiform layer 

and in RPE cells (123,124).  COX-2 has been shown to 

modulate the expression of VEGF ligand and its receptors, 

an important mediator in the development of ocular 

neovascularization (125). COX-2 involvement has been 

associated with CNVMs and subretinal fibrosis of the 
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retina (125).  It has been shown that COX-2 could 

stimulate macrophages to produce TGF-β, which 

consequently synthesizes and deposits collagen fibers, 

eventually leading to fibrosis (126).  An experimental 

study on wet AMD demonstrated that COX-2-selective 

inhibitor reduces subretinal fibrosis in vivo and in vitro 

(127). This experiment confirmed the role of COX-2 in the 

AMD physiopathogenesis. Corroborating the 

experimental findings, the immunohistochemical analysis 

of CNVs in humans revealed an expression of COX-2 in 

69% of the cases, confirming the theory that inflammation 

is an important component in the development and 

progression of neovascular AMD in some patients (128). 

Research has shown that a specific NF-kB inhibitor, the 

pyrrolidine dithiocarbonate (PDTC), significantly reduced 

the expression of COX-2 in RPE cells treated with the LA, 

a fatty acid involved in AMD genesis, indicating that 

activation of NF-kB was involved in LA-induced 

expression of COX-2 (37).  
 

C-reactive protein (CRP) 

CRP is a highly conserved acute phase protein of the 

pentraxin family that consists of 5 noncovalently linked 

subunits of ≈23 kDa. It is predominantly produced in the 

liver, although, under certain conditions, it can also be 

secreted by smooth muscle cells and endothelial cells 

(129,130). 

CRP is released into circulation upon stimulation by IL-6 

and other cytokines (131).  Several studies suggest a close 

association between serum CRP and AMD (132-134). 

A meta-analysis study showed that high serum levels (> 3 

mg/L) of CRP are associated with a two-fold likelihood of 

late onset AMD, compared to low levels (< 1 mg/L) (135). 

The Rotterdam study found that elevated baseline levels of 

highly sensitive CRP were associated with the 

development of early and late AMD in the large 

population-based cohort (136). 

A study on genotyped human donor eyes reported that eyes 

homozygous for the high-risk CFH (Y402H) allele had 

elevated monomeric CRP (mCRP) within the 

choriocapillaris and Bruch’s membrane, compared to 

those with the low-risk genotype. This study indicated that 

mCRP is the most abundant form of CRP in human 

choroid, and that mCRP levels are elevated in individuals 

with the high-risk CFH genotype. Moreover, pro-

inflammatory mCRP significantly affected endothelial cell 

phenotypes in vitro and ex vivo, suggesting a substantial 

role for mCRP in choroidal vascular dysfunction in AMD 

(137). Significant CRP deposition has shown to trigger and 

exacerbate the inflammatory response in RPE cells 

promoted by the induction of pro- inflammatory cytokines 

such as IL-8. This induction is mediated by NF-kB and 

multiple Mitogen-activated protein kinase (MAPK) 

pathways through Fc gamma receptors. Thus, it might 

contribute to the accumulation of immune cells observed 

in areas of drusen formation and choroidal 

neovascularization (138). 
 

E-Selectin 

 E-selectin, known as the endothelial leukocyte adhesion 

molecule 1 (ELAM-1), is responsible for the regulation of 

the first processes in the adhesion cascade, binding and 

rolling of leukocytes into the endothelium. E-selectin is 

inducibly expressed in endothelial cells (139). 

An immunohistochemistry study demonstrated that 

subfoveal CNVMs surgically excised from AMD patients 

presented higher ICAM-1 and E-selectin immunostaining 

when compared with those in the normal eye and that the 

increase in ICAM-1 and E-selectin immunoreactivity 

occurs primarily in the periphery of the CNVMs, where 

there are larger numbers of vessels. However, this 

immunoreactivity was not identified on any larger patent 

vessels in the central, fibrotic regions of the CNVMs 

(140). An experimental wet AMD study reported an 

increase in E-selectin in RPE, in the choroidal vascular 

endothelial and inflammatory cells (141). However, 

another study was not able to demonstrate an association 

between the E-selectin single nucleotide polymorphism 

(SNPs) and AMD development (142). 
 

Intercellular Adhesion Molecule 1 (ICAM-1) 

 ICAM-1 or CD-54 is a glycoprotein of the 

immunoglobulin superfamily. Like other adhesion 

molecules, ICAM-1 is distributed in the endothelial cells 

and leukocytes, participating in the leukocyte recruitment 

to damaged or inflamed tissue (143). It is known that, in 

the normal eye, ICAM-1 is expressed in low levels in the 

choroid and retina vascular endothelium, as well as in the 

RPE, Bruch’s membrane and outer limiting membrane 

(144-146). It was also demonstrated that ICAM-1 presents 

a higher concentration in the macular region than in the 

peripheral region (147). This finding suggests a higher 

susceptibility of the macula for the traffic of immune cells, 

including the macrophages, which accounts for the higher 

incidence of CNV in this region. It is known that the 

macrophages, besides producing VEGF (26), are also 

sources of inflammatory and proangiogenic cytokines, 

which mediate the inflammatory response and contribute, 

significantly, to the formation of CNVM (89,148-151).  In 

a hypercholesterolaemic experimental model, an increase 

in the ICAM-1 and interleukin-6 expression in the 

sclerochoroidal complex was observed (152).  In 

pathological conditions, as well as in AMD, a significant 

increase in the expression of ICAM-1 in RPE vessels and 

cells was observed. This increase in immunoreactivity was 

primarily observed in CNVM periphery, where there are a 

large number of vessels (153). Other experiments have 

also reported an increase in the ICAM-1 expression in the 

RPE, choroidal vascular endothelial and inflammatory 

cells in wet AMD (144, 154). 

A study on CD18-and ICAM-1–deficient mice reported 

that they developed less CNVM when compared with 

normal mice, suggesting that this immunoglobulin plays 

an important role in the formation of CNVM (155). The 

analysis of the aqueous humor of patients who underwent 

cataract surgery revealed that concentrations of MCP-1, 

soluble intercellular cell adhesion molecule-1 (sICAM-1), 

and soluble intercellular cell adhesion molecule-1 

(sVCAM-1) were significantly associated with exudative 

AMD, even in the presence of normal VEGF 

concentrations. This study concluded that MCP-1, 

sICAM-1, and sVCAM-1 could potentially be additional 

target molecules in the treatment of exudative AMD (156). 

It has been demonstrated that the expression of ICAM-1 

and MMP-9 in ARPE-19 cells may be reduced by 

quercetin, a flavonoid polyphenolic, via the MEK1/2-

ERK1/2 and PKCδ-JNK1/2-c-Jun or NF-κB pathways 

(157). Another study corroborates this finding by 

demonstrating that an NF-κB inhibitor (Bay 11-7082) 
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reduced the expression of ICAM-1, sICAM-1, IL-6, IL-8 

and MCP-1 in ARPE-19 cells (158). 
 

VCAM-1 (Vascular cell adhesion protein 1) 

VCAM-1 is expressed in endothelial cells in response to 

cytokines (e.g., TNFα and IL-1β) and mediates adhesion 

of leukocytes including lymphocytes and monocytes (159-

160). VCAM-1 is over-expressed in a number of human 

ocular diseases (161-162).  

An experimental study aiming at assessing the role of 

inflammation as a mechanism of vision loss and 

degeneration of the sensory retina underlying CNV, 

reported extensive macrophage recruitment in the retina 

under CNV. Macrophages were closely associated with 

retinal blood vessels strongly immunoreactive for VCAM 

1, ICAM 1, or platelet-endothelial cell adhesion molecule 

(PECAM). The macrophage infiltration was responsible 

for the Müller cell activation, suggesting that macrophages 

induce degenerative changes in the retina under CNV 

(163).   

 A longitudinal population-based cohort study examined 

the relationship between serum markers of inflammation, 

oxidative stress, and endothelial dysfunction with a 20-

year cumulative incidence of early AMD. It reported a 

modest relationship of serum high-sensitivity CRP, TNF-

α receptor 2, and IL-6 to soluble VCAM-1 of early AMD, 

regardless of age, smoking status, and other factors (164). 

 

CONCLUSION 

Activation of NF-κβ induces an increase in the expression 

of genes associated with inflammatory cytokines, 

enzymes, and adhesion molecules, which, in turn, are 

closely related to AMD. The molecules derived from the 

activation of this nuclear transcription factor, such as TNF-

α, IL-6, IL-8, COX-2, and ICAM-1, have been considered 

therapeutical targets of experiments related to macular 

degenerative disease. The other molecules, despite having 

their role in AMD physiopathogenesis determined, have 

not, surprisingly, received the same attention. Currently, 

AMD treatment is predominantly provided with anti-

VEGF substances. By analyzing the large number of 

molecules involved in AMD genesis, mainly those derived 

from NF-κβ activation, we may expect that more 

preventive and therapeutic treatments will be offered in the 

next decades.  
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